# The Status of DØ: Detector and Physics



# Georg Steinbrück Columbia University, New York

**Annual Fermilab Users Meeting** 





- The Upgraded D0 detector
- The Trigger System
- First Results
- Run 2 b

### DØ: An International Collaboration



644 members73 institutions18 countries

# To set the stage: DØ Performance

- 38 pb<sup>-1</sup> delivered in 2002
- 26 pb<sup>-1</sup> utilized
- 12 pb<sup>-1</sup> recorded physics
- Reconstructed within a week

84 million recorded so far



#### **The Run 2 Detector**



# Silicon Microstrip Tracker (SMT)



- Innermost layer at r = 2.6 cm
- Central region
  - 6 barrels, 4 layers SS+DS 100
  - 12 F-disks (DS)
- Forward region
  - 4 H-disks (SS)
- 793k channels
- Radiation hard up to 1 Mrad
- 95% channels operational





G. Steinbrück

10-June-2002

### **SMT Performance**



- The SMT has been performing well
- Detailed Studies and Alignment under way

# **The Central Fiber Tracker**

- Up to eta=1.7
- 20 cm < r < 51 cm
- 8 double layers
- CFT: 77,000 channels







#### **CTF Performance: VLPC**





#### Visible Light Photon Counter

- Solid state photon detectors
- Detects single photons
- ◆ ~10 photons will get to VLPCs
- Operate at 9 Kelvin
- Work in a high rate environment
- ◆ Quantum efficiency ~80%
- High gain 17k to 65k electrons per converted photon
- Low gain dispersion

# **Tracking Performance**



 $K_S \rightarrow \pi^+\pi^ V_S \rightarrow \pi^-\pi^ V_S \rightarrow \pi^-\pi^$ 

Impact Parameter Resolution

- Resolution 45  $\mu$ m (includes beam spot size of ~28  $\mu$ m)
- First pass of alignment done
- improvements under way: expect x2 better

G. Steinbrück

10-June-2002



## **The Calorimeter**



- Using Run 1 calorimeter
- Uranium-Liquid Argon
  - stable, uniform response, radiation hard, fine segmentation
- •Uniform, hermetic, full coverage  $|\eta| < 4.2$
- Compensating (e/ $\pi$  ~1)
- Good energy resolution
- New readout electronics to operate in Run 2 environment

Very stable running – ~50 bad channels (0.1%)

# **Calorimeter Performance: Z→ee**



- Calorimeter performance well understood
- Working on calibration of low energy cells.

Z→ee signal (Calorimeter only)

~3 pb<sup>-1</sup>

# Calorimeter Performance: Missing E<sub>T</sub>

- Determine ME<sub>T</sub> resolution from inclusive di-electron sample with at least one track match
  - Mainly Z, Drell-Yan

Snapshot of present performance



- Use ME<sub>T</sub> significance to take into account event topology, found vertices, and known resolutions
  - Low significance no physics ME<sub>T</sub>
  - high significance ME<sub>T</sub> not likely due to mismeasurement

Significance is well described by Monte Carlo

→ we understand the resolutions





#### **The Muon Detector**



- Two regions: Central and Forward
- Coverage up to  $\eta=\pm 2$ .
- •Three layers: one inside (A), two outside (B, C) the toroid magnet
- Consists of scintillators and drift tubes



#### **Muon Performance**

# Matching central Tracks to Muons →good momentum resolution!







Timing cuts greatly reduce cosmic background!

14

## **The Forward Proton Detector (FPD)**

- Diffractive Physics: Rich Physics Program
  - Need special detectors at very small angles : FPD
- FPD consists of 2 arms of
  - -Roman pots installed in 4 quadrupole and 2 dipole castles
- From hits in scintillating fibers:
  - •fractional energy lost by the proton and scattering angle
  - •Trigger on elastic, diffractive, double pomeron events



- Routinely inserted pots during collisions
- Recorded > 2 M events with elastic triggers
- Working on integration with the rest of D0
- First diffractive+jet data by December





250

# The D0 Trigger System



But data acquisition rate is 50 Hz

#### ⇒New 3 Level Trigger System



## Level 1 performance

Trigger on EM objects, Muons, Jets

#### L1 Jet turn-on



#### L1 EM turn-on



Calorimeter Trigger: All towers at  $|\eta|$  <1.6 are instrumented, <2.4 by the end of the week, complete coverage + MET very soon!

# **Level 2 performance**

Triggering on EM objects, Jets, Muons at L2





Offline: pT >25 GeV

- Efficiency > 1/R→Better than prescale
- Currently 5 GeV cut on single Muons:
  - limited L2 input rate: 200 Hz (2 kHz after June shutdown)

# Silicon Track Trigger (STT)

Trigger on b jets containing large Impact parameter tracks:



- **♦** Trigger on Z→bb (increase yield x6)
  - **◆Cut M<sub>+</sub> systematics in half**
  - ♦ Increase B→J/ψK<sub>S</sub> yield by 50%



- Include SMT data in track trigger (at L2)
- Find SMT hits in roads defined by CTT tracks
- Fit trajectory to L1CTT+SMT hits. Measure
   pT, impact parameter, azimuth
- Impact parameter resolution 35 μm

Will be online in the Fall

CFT H layer

## **New L3/DAQ System**

- L3 "Commodity" DAQ
- Based on "off the shelf" components
  - Single Board Computers (SBC) to read out L3 buffers: Intel 1GHz,
     VME based, dual 100Mb ethernet, Linux OS
  - send data over fast ethernet switches
  - Cisco Switch sends data to Linux Farm nodes:
  - Event building and trigger decisions performed by Linux farm



# Level 3 performance

Triggering on Jets, EM objects taus, Muons





Offline Jet E<sub>⊤</sub>

15 GeV Jet Trigger

**Comparing L3 to offline** 

Offline EM  $E_T$ 15 GeV EM Trigger: rejection = 15 wrt Level 1 (10 GeV @ L1)

Green: 12 GeV threshold + shower shape cuts .or. the above

## **Offline Reconstruction**



- Data Storage and Access System (SAM) has been a success!
- Remote SAM stations in place at several institutions

Offline farms keeping pace with data from the detector Reconstruction about 4 million events per day



# **Physics goals for Run 2**

- Explore EW Symmetry Breaking
  - direct searches for Higgs / new particles
    - Discovery potential: SUSY,...
    - or exclusion of large areas of phase space
  - precision measurements of EW param's
    - W mass to 30 MeV / Width to ~12 MeV
    - O(2k) Top events: Top mass to 2 GeV
    - Test of SM window for New Phenomena
    - sensitivity to H.O. effects from Higgs/New Phys
- QCD studies: High E<sub>T</sub> jets, Dijets, Diffraction,...
- B Physics: b production, sin 2β, B<sub>s</sub> mixing
- Combining results with CDF: Tevatron averaging WG's in place and ready for business



## W→ev





- All distributions subtracted for QCD background
- Agreement with MC!

#### Transverse Mass





10

15

5

G. Steinbrück

 $M_T(GeV/c^2)$ 

10-June-2002

24

 $^{20}$   $P_{T}^{W} (GeV/c)^{25}$ 

#### Studies of W+Jet distributions

Distributions are background subtracted EM objects matched to tracks, EM E<sub>T</sub>>20GeV, E<sub>T</sub><sup>miss</sup>>20GeV

DØ Run2 Preliminary **DØ Run2 Preliminary**  $p_T > 10 \text{ GeV/c}$  $(W \rightarrow e V) + N_{Jets}$  Events  $/\eta/<2.0$  $p_T > 15 \text{ GeV/}c_{-}$  $W \rightarrow e \nu + N_{Jets} Events$  $/\eta/<1.5$  $p_T > 20 \text{ GeV/c}^{-1}$  $/\eta/<1.0$ Vary Jet Pseudorapidity  $N_{Jets}$ Vary Jet p<sub>T</sub>  $N_{Jets}$ • Berends scaling. ~6 pb<sup>-1</sup> W+jets important background to top!



## Z→ee



One Calorimeter Clusters matched to Central Track

Low backgrounds!

~3 pb<sup>-1</sup>

# **Z**, **J/** $\Psi$ and $\Upsilon \rightarrow \mu \mu$



## **Understanding jets: On the way towards QCD**





- Preliminary Jet Energy Scale from Jet+γ data
- ∫Ldt ~2 pb<sup>-1</sup>

#### Many different triggers used!



G. Steinbrück

10-June-2002

# b tagging with Muons

**b** Tagging:

- •Top, Higgs, ...
- B Physics
- Tagging b $\rightarrow$ WX $\rightarrow$  $\mu\nu$ X

Relative P<sub>T</sub> of muon wrt jet axis: p<sub>T</sub><sup>rel</sup>



**DØ Run 2 Preliminary** 



Fitting **p**<sub>T</sub><sup>rel</sup> distribution to a mixture of b→µ and background templates to determine b content

# Impact Parameter b tagging

- •Relies on long lifetime of B hadrons (cτ ~ 1.5 ps)
- Does not rely on presence of reconstructed secondary vertices



Clear Evidence of high impact parameter tracks in Muon Tagged sample!



G. Steinbrück

# New Phenomena: Leptoquark Search

#### Compare data and background distributions





Data: 5 events

Total Background :  $8.1 \pm 4.0$  events

• QCD: 7.8 ± 3.9 events

• Drell-Yan :  $0.3 \pm 0.1$  events

LQ (m = 100 GeV):  $4.7 \pm 0.6$  events

## **Search For Extra Dimensions**

Run 151964 Event 29138403 Thu May 9 00:22:01 2002





33

- »Looking for high mass di-EM pairs
- »Sensitivity doubled wrt to Run 1.

### **Highest mass diEM candidate**

| EM1                                                                      | EM2                        |
|--------------------------------------------------------------------------|----------------------------|
| E <sub>T</sub> = 115.4 GeV                                               | E <sub>T</sub> = 109.7 GeV |
| $\eta = 0.10$                                                            | $\eta = -2.10$             |
| $\phi = 5.27$                                                            | $\phi = 2.19$              |
| No track match                                                           | No track match             |
| $M(diEM) = 376 \text{ GeV}; \cos\theta^* = 0.79; ME_T = 8.2 \text{ GeV}$ |                            |

## What we can do with < 2 fb<sup>-1</sup>

#### 100pb<sup>-1</sup>

\* measure first W, Z, jet, top, b, cross sections at 1.96 TeV

#### 300 pb<sup>-1</sup>

- \* pin down high-ET jet behavior (fix gluon PDF at large x)
- \* measure top mass with half current statistical error
- \* extra dimensions at a scale of 1.6 TeV

#### 500 pb<sup>-1</sup>

- \* signals for WW, WZ production
- \* observe radiation zero in Wgamma process
- \* observation of single top quark production
- \* signals for technicolor?

#### Interesting results will appear well before end of Run 2 a!

# Run 2 b Upgrades

• Present detector designed for ~ 2fb<sup>-1</sup> and 2  $\times$  10<sup>32</sup> cm<sup>-2</sup> s<sup>-1</sup>

- Run 2 b goal: ~15 fb<sup>-1</sup> before LHC physics
  - Physics motivation: Higgs and Supersymmetry
  - Exceeds radiation tolerance of existing silicon detector
  - Requires higher luminosities,  $\sim 5 \times 10^{32}$  cm<sup>-2</sup> s<sup>-1</sup>, trigger upgrades



Replace Silicon Detector with a more radiation-hard version

Improve impact-parameter resolution (b-tagging)

Maintain good pattern recognition Cover  $|\eta| < 2$ 

#### **Upgrade Trigger**

Shift functionality upstream and increase overall Level 1 trigger capability – contain rates, dead time

Incremental Upgrades to Level 2, Level 3 Triggers and online system

# Silicon Detector Upgrade



- Single sided silicon, barrels only
- Detector installed in two halves inside collision hall in ~7 month shutdown
- Inner (vertexing) layers L0, L1
  - Axial only
  - mounted on carbon support





- Axial and stereo (tilted sensors)
- Stavestructures



G. Steinbrück

10-June-2002

# **Trigger upgrades**

| System | Problems                                                                                                  | Solutions                                                                     |
|--------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Cal    | 1) Slow signal rise ⇒ trigger on wrong crossing                                                           | Digital Filter                                                                |
|        | 2) Trig on $\Delta\eta \times \Delta\phi = 0.2 \times 0.2$ TTs $\Rightarrow$ poor resolution, slow turnon | <ul> <li>Clustering (jets)</li> <li>Isolation and shape cuts (e/γ)</li> </ul> |
| Track  | Rates sensitive to occupancy (i.e. number of min bias events)                                             | <ul><li>Narrower Track Roads</li><li>Improve Cal-Track Match</li></ul>        |

#### L1 calorimeter:







#### **Conclusions**

- First year of Tevatron Running was mainly used for commissioning the detector and the trigger system
- Meanwhile we have started to work on the Runll b upgrade.
- All subdetectors are operating well
- Software and Computing systems working well
  - keeping up with incoming data
- Now working on fine tuning of the detectors
- Level II Trigger commissioning under way
- L2 Silicon Track Trigger this fall
- Transition to Commodity L3 DAQ system done
- First results already presented at winter conferences
- First physics results coming soon!
  - Exciting years are ahead!